Bone Marrow Transplantation for Severe Aplastic Anemia

David A. Margolis, MD
Children’s Hospital of Wisconsin
Medical College of Wisconsin

Conference Objectives (cut and pasted from AAMDS.ORG)

- Learn how to stand up for your health, take charge of your care and become a more powerful patient.
- Learn more about your diseases, current treatments and emerging therapies.
- Get your questions answered. Plenty of time will be provided in every session.

Objectives for This Talk

- Basic Concepts of Bone Marrow Transplantation
 - Teach you the language of BMT
 - Describe the process of BMT
 - Empower you to ask the right questions
- Review of Recent Data for outcomes for children and adults
 - Short term and long term data
- Answer Questions (if possible, avoiding personal questions)
Glossary

- **Bone Marrow** - organ in the body which makes blood cells. These cells are white cells, red cells and platelets.
 - Analogy: Bone marrow = garden

Glossary

- **Hematopoietic Progenitor Cell (the old blood stem cell)** - the seed cells that germinate into the blood cell flowers.
 - HPCs are harvested from: Bone Marrow, Cord Blood, Peripheral Blood Progenitor Cells.
 - All three sources can be manipulated to remove or enrich cells.
 - T-cell depletion, stem cell expansion
Glossary: Three Phases of Transplant

- Conditioning Phase: Chemotherapy +/- Radiation Therapy to condition the body to accept the transplanted cells.
- HPC infusion Phase: The actual infusion of HPC cells (usually through an IV...just like any blood transfusion). The ultimate in blood transfusions!
- Deal with it Phase: Side effects

The BMT Cycle

DONOR

T-CELLS

RECOGNIZE
HISTOINCOMPATIBILITY
TO IDENTIFY: USE DNA SEQUENCING
HLA PROTEINS: A,B,C,DR,DP,DQ
HVG=REJECTION

HOST

GVHD

DONOR CHOICE AND SOURCE

CONDITIONING
What are the side effects?

- Day 0-Day 30
- Day 30-100
- Day 100-1 year
- Late Effects

SHORT TERM SIDE EFFECTS

- Infection/Infection/Infection
 - Add Virus’ to what you are used to.
- End Organ Toxicity
 - Lungs/Liver/Kidneys
- Acute GVHD
- Rejection

“Middle Term” Side Effects

- Graft Versus Host Disease and effects due to treatment for GVHD
- End-Organ Toxicity
Late Effects

- Intensity of Treatment and chronic GVHD are the key variables.
 - Chronic GVHD is the main prognostic factor for quality of life and other late effects
- Fertility
- Growth and Development
- Late Cancers

THE DELICATE BALANCE -

Survivorship

- Lance Armstrong Foundation (LAF) defines cancer survivorship as living "with", "through" and "beyond" cancer (SAA).
What have we learned from historical (pre 2000) alternative donor data?

- We need an alternative donor transplant regimen that:
 - Prevents rejection
 - Prevents GVHD
 - Prevents late effects
 - Has excellent long term survival
 - Deeg et al. and Bacigalupo et al. opened the era of improving outcomes with less intense regimens.
 - Increasing numbers of publications with increasing options for conditioning and HPC source.

The “De-escalating TBI” Experience
Deeg et al. BBMT 2001

- 1994-1999; 14 centers
- N=50
- Median age=14 years (1-46y)
- Median Duration of SAA=14 months (3 months-264 months)
- Cyclophosphamide 200 mg/kg and ATG (equine) 90 mg/kg with de-escalation of TBI (3x200cGy; 2x200; 1x200)
- MTX/CSA GVHD prevention
Survival was 58% at two years.
- Shorter disease duration and younger age improved survival.
- Unexpectedly high rate of diffuse alveolar damage.
- Data is the basis for current North American CTN trial:
 - Cyclophosphamide de-escalation trial.
 - Fludarabine/ATG/TBI 200 and de-escalating cyclophosphamide starting at 150 mg/kg total CY.

The "De-escalating TBI" Experience
Deeg et al. BBMT 2001

- Survival was 58% at two years.
- Shorter disease duration and younger age improved survival.
- Unexpectedly high rate of diffuse alveolar damage.
- Data is the basis for current North American CTN trial:
 - Cyclophosphamide de-escalation trial.
 - Fludarabine/ATG/TBI 200 and de-escalating cyclophosphamide starting at 150 mg/kg total CY.

The EBMT Experience
Bacigalupo et al. BMT 2005

- 1998-2004, 13 centers
- N=38
- Median age=14 years (3-37y)
- Median Duration of SAA=20 months (6 weeks-10 years)
- Fludarabine 30 mg/m² x 3; CY 10 mg/kg x 4; Thymoglobulin 3.75 mg/kg x 4
- Low dose MTX/CSA GVHD prevention

Overall survival is 73%
- 7 cases of graft rejection or graft failure (5 alive)
- aGVHD II-III in 11%
- cGVHD in 27%
- Deaths were due to graft failure, EBV-PTLD, hemorrhage.

Figure 1: Actuarial survival of 38 pediatric with acquired SAA undergoing allogeneic donor transplants.
The EBMT Experience
Bacigalupo et al. BMT 2005

• Excellent survival without any TBI in the younger cohort.
• EBMT current trial uses a similar regimen with 200 cGy TBI to try to promote engraftment for those over the age of 14 years.

EBMT Approach Repeats

- MD Anderson Group
- Total of 20 patients, 13 treated per EBMT (B).
- Mixture of matched related donors and unrelated donors.
- Median age 34 years
- Leukemia and Lymphoma 2011

Comparison of event-free survival and overall survival in patients transplanted for Severe Aplastic Anemia: The Milwaukee Experience (2005-2011)

N=16
Median F/U=30 months
Range: 13-70 months

Unpublished Data
What did we learn from those studies?

- Less intense conditioning paired with matched related bone marrow improved compared to the papers from the mid 1990's.
- Rejection a primary reason for failure.
- Immune reconstitution (re-forming your immune system to fight infections) also a concern.
- Leads us to more research/questions.

THE DELICATE BALANCE - Questions to Ask

- Cam- path
- Fludarabine Based
- ? ATG
- ? CY
- ? TBI
- Timing
- PBSC
- TCD
- Cord(s)
- Haplo vs. Unr
- T Replete
- Marrow
- YIELD
- REJECTION
- GVHD
Can we improve outcomes using a different package?

- Alemtuzumab (Campath) is a different antibody based treatment.
- Targets a different protein than ATG does.
 - CD52 (Alemtuzumab) vs. CD3 (ATG)
- Pioneered in Britain.
- Blood 2011 (online publication)

Marsh et al 2011

- N=50 patients
 - 8-62 years age range (median age 35 years)
 - ¼ over the age of 50
 - 21 Patients with HLA matched donor
 - 29 patients with UNR donor (all except two 10/10 donors)

Marsh et al 2011

- Overall survival for the entire cohort comparing matched sibling donors with unrelated donors.
- Deaths due to chronic GVHD, invasive fungal infection at day 14, graft failure in two patients, and EBV PTLD in one.
Marsh et al 2011

- Overall survival for the entire cohort comparing matched sibling donors with unrelated donors.
- Six graft failures (2 died, 2 recovered, two retransplanted and alive)
- GVHD:
 - Acute GVHD in 15% (all grade I or II)
 - 7% cGVHD

Marsh et al 2011

- Overall survival for the entire cohort stratified by comorbidity index. (95% vs. 42% statistically significant)
- Concept of going to BMT when you are "well".

Marsh et al 2011

- Overall survival for the entire cohort stratified by age.
Unrelated Donors and Patient Severity
Score: TIMING, TIMING, TIMING
(Unpublished Data from Dr. Marsh)

- Data for 23 patients
- 20 were Sorrell Score 0-1
- 3 had Sorrell Score of 2 or more

Marsh Take Home Messages

- Excellent Results with a primarily adult cohort.
- No use of Radiation.
- Chemotherapy dosing very favorable from a late effects profile.
- Data showing the healthier you are, the better your outcome.
- Timing, Timing, Timing

Can we use cord blood as an HPC source?

- Cord Blood is an HPC source that has proven to be very useful for patients with malignant disease.
- In theory and in practice, may be associated with less GVHD for similar HLA matching.
- Engraftment has historically been a concern for patients with non-malignant diseases including SAA.
Yamamoto et al. Blood 2011

- 12 Adult patients with SAA
- 2002-2009
- Median Age: 49 years old.
- All “single cord” blood transplants.
 - Median Cell dose 2.5e7/kg
- Fludarabine/Melphalan/4 Gy TBI is the conditioning regimen.

Survival of 12 patients with SAA undergoing unrelated cord blood transplantation.

2 deaths due to Pneumonia Syndrome
No Grade III/IV GVHD; 5/9 developed Grade II GVHD
1/3 Developed limited cGVHD

Adult Cord Blood Take Home Messages

- Small numbers
- It is feasible with better outcomes than historical data
- Regimen published is somewhat intense.
- Cord Blood is an option to discuss with your transplanter.
Recent Data Observations

- Many choices for conditioning regimens.
- Increased choices for HPC source and donor.
- There are increased options for non-transplant options which can affect the crucial timing issue.

Questions to Discuss with MD

- Donor Options based on HLA typing
- Conditioning options based on donor options
- Timing Issues
 - Not too early, Not too late....JUST RIGHT
It’s a Brave New World

- Special Issues for the new age of cord blood banking and in vitro fertilization.
- Very common questions now in the pediatric setting.

Interesting Case

- 3 year old girl with newly diagnosed SAA
- 3 siblings, no HLA match
- Plan to use Immune Suppression Treatment
- FAMILY HAD SAVED HER OWN CORD BLOOD: SHOULD WE USE IT?

FAMILY HAD SAVED HER OWN CORD BLOOD: SHOULD WE USE IT?

- Case report in the literature from Mt. Sinai in NY (Fruchtman et al. BBMT 2004)
- ATG/CSA/Pred followed by Cord Infusion
- Unclear on prolonged follow up
Preimplantation Genetic Diagnosis

- Uses In Vitro Fertilization (IVF) to find an HLA matched sibling.
- Following IVF, preimplantation genetic diagnosis (PGD) can be used for the purpose of HLA matching.
- This is done by selecting for and transferring only the embryos that are HLA matched to the affected child.

Objectives for This Talk

- Basic Concepts of Bone Marrow Transplantation
 - Teach you the language of BMT
 - Describe the process of BMT
 - Empower you to ask the right questions
- Review of Recent Data for outcomes for children and adults
 - Short term and long term data
- Answer Questions (if possible, avoiding personal questions)
THANK YOU!

AAMDS FOUNDATION
• Our patients and families
• Our team in Milwaukee
• dam@mcw.edu

OPEN TIME FOR QUESTIONS
• For personal questions, I recommend the afternoon session!