The Myelodysplastic Syndromes

Jamile M. Shammo, MD, FASCP, FACP
Associate Professor of Medicine and Pathology
Division of Hematology, Oncology, and Stem Cell Transplant
Director, MDS/MPN/ Aplastic Anemia Program
Rush University Medical Center
Chicago, Illinois

Myelodysplastic Syndromes

- A group of malignant hematopoietic disorders characterized by:
 - Bone marrow failure with resultant cytopenia and related complications
 - Dysplastic morphology
 - Tendency to progress to AML
- Overall incidence 3-4/100,000
 - ≈ 10,000/yr in US

MDS: Etiology

Acquired:
- De novo: Cause is unknown
 - Secondary:
 - Toxic exposure:
 - Therapeutic: alkylating agents, Topo-II inhibitors, ∝-emitters (32P), auto RCT
 - Environmental/occupational (benzene), Tobacco
 - Antecedent hematological disorders:
 - Aplastic anemia
 - PNH

Heritable:
- Constitutional genetic disorders
 - Trisomy 8 mosaicism
 - Familial monosomy 7
- Neurofibromatosis 1
- Embryonal dysgenesis (del12p)
- Congenital Neutropenia
 - Kostmann, Schwartzman-Diamond
 - DNA repair deficiencies
 - Fanconi anemia, AT, Bloom syndrome
 - Pharmacogenomic polymorphisms (GSTq1-null)

Epidemiology

- Overall incidence: 4.4 per 100,000

MDS presents a diagnostic challenge

- MDS requires a morphologic diagnosis
 - minimum criterion is dysplasia in ≥ 10% of any myeloid lineages (also seen in AML, CMML, MPN)
- Assessment of cellular atypia is an inexact art
 - interobserver variability
 - specimen handling and processing
- Features of dysmyelopoiesis overlap with metabolic and non-malignant hematologic disorders
- MDS requires a diagnosis of exclusion

Clinical Entities overlap with MDS

AA, aplastic anemia; LGL, large-granular lymphocyte leukemia; MPN, myeloproliferative neoplasms; PNH, paroxysmal nocturnal hemoglobinuria; PRCA, pure red cell aplasia

MDS: Clinical Presentation

- Patients typically present with symptoms related to bone marrow failure, such as fatigue, infections and/or bleeding
- Anemia is the most common cytopenia in MDS
 - Solitary cytopenia in 30%
 - Usually hypoproliferative: low reticulocyte count
- Neutropenia in > 50% of patients
 - 30-35% have ANC <1000-1500/μl
 - Only 10% have infection as presenting or recurring problem
 - No indication for routine antibacterial prophylaxis
 - Patient education for neutropenic fever precautions essential
- Thrombocytopenia complicates 25-50% of patients
 - Rarely only lineage affected
 - PLT dysfunction has been described causing prolonged bleeding time and abnormal platelet aggregation studies

MDS: Clinical Presentation

- Thrombocytosis can be seen with certain subtypes of MDS such as Del 5q syndrome, and RARS-T
- Lymphadenopathy is uncommon.
- Splenomegaly is also uncommon in MDS, but may be seen in MDS/MPN overlap syndromes such as CMML

Cytopenia: Basic Diagnostic Evaluation

- Peripheral blood counts, CMP, reticulocyte count
- Review of the peripheral blood smear
- Laboratory tests:
 - Iron studies, ferritin, B12, folate levels, EPO level
 - SPEP/Light chains, autoimmune profile, Hepatitis/HIV testing
 - Paroviral PCR, Heavy metals: lead/copper
- Bone marrow biopsy and aspiration
 - Cytogenetics/ FISH/Iron/Reticulin stains
 - PNH testing
 - JAK-2 mutational testing
- Novel diagnostic tests
 - Mutation analysis

http://www.NCCN.org MDS Guidelines
http://www.hmds.org.uk/mds.html
MDS: Peripheral Smear
Hypogranular Hyosegmented neutrophil

Erythroid Dysplasia: Bone Marrow
Dyserythropoiesis

Granulocytic Dysplasia: Marrow and Blood
Dysgranulopoiesis
Dysmegakaryopoiesis

![Image](clinicaloptions.com/oncology)

Courtesy of Dr. Bennett and Dr. List.

Bone Marrow Iron Stain: Ring Sideroblasts

![Image](clinicaloptions.com/oncology)

Deletion 5q Syndrome:

- del(5q) as sole cytogenetic abnormality
- Female predominance (sex ratio: 7:3)
- Median age at diagnosis: 68 yrs
- Macrocytic anemia, mild leukopenia, normal or increased platelet count
- Indolent course, favorable prognosis
 - AML transformation: 12% to 16%
 - Median survival: > 5 yrs

MDS Classification: WHO 2008

- Refractory cytopenia with unilineage dysplasia (RCUD)
- Refractory anemia
- Refractory neutropenia
- Refractory thrombocytopenia
- Refractory anemia with ring sideroblasts (RARS)
- Refractory cytopenia with multilineage dysplasia (RCMD)
- Myelodysplastic syndrome with isolated del (5q)
- Refractory anemia with excess blasts (RAEB)
 - RAEB-1 (5-9% blasts in the bone marrow)
 - RAEB-2 (10-19% blasts in the bone marrow)

Provisional entity: Refractory anemia with ring sideroblasts with thrombocytosis: RARS-T

WHO Revisions 2008: MDS Cytogenetic Minimal Criteria

- Presence of a refractory cytopenia without morphologic features and the following cytogenetic abnormalities considered "presumptive evidence" of MDS:
 - Unbalanced
 - -7 or del(7q)
 - -5 or del(5q)
 - t(17q) or t(17p)
 - del(11q)
 - del(12p) or t(12p)
 - del(9q)
 - idic(X)(q13)
 - Balanced
 - t(11;16)(q23;p13.3)
 - t(3;21)(q26.2;q22.1)
 - t(1;3)(p36.3;q21.1)
 - t(2;11)(p21;q23)
 - inv(3)(q21;q26.2)
 - t(6;9)(p23;q34)
 - Other
 - Complex karyotype (3 or more abnormalities)

The International Prognostic Scoring System (IPSS)
A Tool for Risk Stratification

<table>
<thead>
<tr>
<th>Prognostic variable</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>≥2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow blasts</td>
<td><5%</td>
<td>5% to 10%</td>
<td>11% to 20%</td>
<td>21% to 30%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Karyotype*</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cytopenias†</td>
<td>0/1</td>
<td>2/3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Total Score

<table>
<thead>
<tr>
<th>Risk</th>
<th>Low</th>
<th>Intermediate I</th>
<th>Intermediate II</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>5.7</td>
<td>3.5</td>
<td>1.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*Good = normal, Y, del(5q), del(20q); intermediate = other karyotypic abnormalities; poor = complex (≥ 3 abnormalities) or chromosome 7 abnormalities.
†Hb < 10 g/dL, ANC < 1800/μL, platelets < 100,000/μL.
Survival and AML progression according to IPSS

Revised IPSS

Design of the new Prognostic System

Revised IPSS

IPSS-R for MDS: Prognostic Score

Values *

Prognostic Risk Groups/Score

1. Very Good 0-2
2. Good 2-3
3. Intermediate 3-5
4. Poor 5-7
5. Very Poor 7-9

* Prognostic analysis for survival and AML evolution

www.MD-Congress.com
Prognostic Model for Low-risk MDS

<table>
<thead>
<tr>
<th>Adverse Factor</th>
<th>Coefficient</th>
<th>P Value</th>
<th>Assigned Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfavorable cytogenetics*</td>
<td>0.203</td>
<td>< .0001</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥ 60 yrs</td>
<td>0.348</td>
<td>< .0001</td>
<td>2</td>
</tr>
<tr>
<td>Hb < 10 g/dL</td>
<td>0.216</td>
<td>< .0001</td>
<td>1</td>
</tr>
<tr>
<td>Plt < 50 x10^9/L</td>
<td>0.498</td>
<td>< .0001</td>
<td>2</td>
</tr>
<tr>
<td>50-200 x10^9/L</td>
<td>0.277</td>
<td>.0001</td>
<td>1</td>
</tr>
<tr>
<td>BM blasts ≥ 5%</td>
<td>.0001</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*In this analysis, diploid and 5q were favorable cytogenetics, all others were considered as unfavorable cytogenetics.

Clinical Effect of Point Mutations in Myelodysplastic Syndromes

Rafael Bejar, M.D., Ph.D., Kristen Stevenson, M.S., Omar Abdel-Wahab, M.D., Naomi Galili, Ph.D., Björn Nilsson, M.D., Ph.D., Guillermo Garcia-Manero, M.D., Hagop Kantarjian, M.D., Azra Raza, M.D., Ross L. Levine, M.D., Donna Neuberg, Sc.D., and Benjamin L. Ebert, M.D., Ph.D.

ABSTRACT
Point Mutations in MDS

- Of the 439 patients evaluated, 51% had at least 1 mutation
 - 52% of the patients with normal cytogenetics
- In a multivariable analysis that included clinical features and other mutations, TP53, EZH2, ETV6, RUNX1, and ASXL1 were shown to be predictive of survival independent of IPSS, age, and sex
 - 31% of patients had mutations in the 5 key genes

Frequency of Mutation and Association with Median Survival.

<table>
<thead>
<tr>
<th>Mutated Gene</th>
<th>No. of Samples (%)</th>
<th>Median Survival (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All samples</td>
<td>430 (1.00)</td>
<td>1.88 (1.66-2.14)</td>
<td></td>
</tr>
<tr>
<td>TET2</td>
<td>90 (20.5)</td>
<td>2.06 (1.26-2.55)</td>
<td>0.48</td>
</tr>
<tr>
<td>ASXL1</td>
<td>63 (14.4)</td>
<td>1.73 (0.96-1.99)</td>
<td>0.063</td>
</tr>
<tr>
<td>RUNX1</td>
<td>39 (8.7)</td>
<td>1.18 (0.77-1.59)</td>
<td><0.001</td>
</tr>
<tr>
<td>TP53</td>
<td>33 (7.5)</td>
<td>0.85 (0.44-1.10)</td>
<td><0.001</td>
</tr>
<tr>
<td>EZH2</td>
<td>26 (6.4)</td>
<td>0.79 (0.57-1.06)</td>
<td><0.001</td>
</tr>
<tr>
<td>NRAS</td>
<td>10 (2.3)</td>
<td>1.03 (0.44-1.98)</td>
<td>0.006</td>
</tr>
<tr>
<td>JAK2</td>
<td>13 (3.0)</td>
<td>2.14 (1.02-3.12)</td>
<td>0.06</td>
</tr>
<tr>
<td>ETV6</td>
<td>12 (2.7)</td>
<td>0.83 (0.49-1.40)</td>
<td>0.35</td>
</tr>
<tr>
<td>CSL</td>
<td>10 (2.3)</td>
<td>1.02 (0.54-1.32)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

General Treatment Principles

- Individualize therapy (according to risk group, patient preference)
 - “To cure” approach:
 - Bone marrow transplantation: The only known curative modality, but appropriate/practical only in a small subset
 - Non-curative approaches:
 - Supportive care/ Chemotherapy
 - Decreased transfusion, infection, improvement in quality of life and prolongation of survival
Allogeneic SCT in MDS

- 452 pts Rx (89-97) by IBMTR for MDS
- Median age 38 yr (2-64)
- RA-RAS 40%; RAEB – RAEBT 60%

<table>
<thead>
<tr>
<th>Outcome</th>
<th>% at 3-yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRM</td>
<td>37</td>
</tr>
<tr>
<td>Relapse</td>
<td>23</td>
</tr>
<tr>
<td>DFS</td>
<td>40</td>
</tr>
<tr>
<td>Survival</td>
<td>42</td>
</tr>
</tbody>
</table>

BMT for MDS patients
EBMT Experience: Results

- The 4-year estimate OS of the whole cohort was 31%

Anemia Management Algorithm 2012:
Low-/Intermediate-1 Risk MDS

- Epo < 500 mU/mL, < 2 U RBC/mo
- Epo > 500 mU/mL, RCDM ≥ 2 U RBC/mo

- ESA
- del(5q)
- Lenalidomide
- + GCSF
- HMA
- IST

Case: Low Risk MDS

- A 60-year-old man with easy bruising and shortness of breath
- CBC reveals the following
 - WBC: 3400 (ANC 1900)
 - Hgb: 8.0 g/dL, MCV: 98
 - Platelets: 177,000
 - Epo level: 175

- Bone marrow biopsy:
 - Hypercellular, with trilineage dysplasia, hypolobated megakaryocytes and 4% myeloblasts
 - Cytogenetic studies reveal normal cytogenetics

Erythropoietin in MDS

- Response rates to erythropoietin much lower in MDS than in other malignancies
 - Mean response rate: 16% to 20%
 - Predictors for good response were serum EPO level < 500 U/L, and lack of previous need for transfusion
- Response rates may improve when given in combination with G-CSF (> 40%), particularly in patients with RARS

Ludwig H. Semin Oncol. 2002;29(3 suppl 8):45-54.

Erythropoietin + G-CSF in MDS: Patient Selection

<table>
<thead>
<tr>
<th>Score</th>
<th>Treatment response criteria</th>
<th>Treatment response score</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1</td>
<td>Stable Hgb >11.5 g/dL, or total stop in RBC transf</td>
<td>eEPO <100 U/L</td>
</tr>
<tr>
<td></td>
<td>Increase in Hgb with >1.5 g/dL</td>
<td>100-500 U/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>500 U/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U RBC/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 units/m</td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td>Good response (74%, n=34)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate response (33%, n=31)</td>
</tr>
<tr>
<td><1</td>
<td>Poor response (7%, n=20)</td>
<td></td>
</tr>
</tbody>
</table>

Case Study

- A 58-yr-old white male has been referred to your office for evaluation of symptomatic anemia. His hemoglobin is low at 10 g/dL, with a normal MCV. WBC count is 6.5/μL and platelet count is 185,000/mm³. Serum ferritin is elevated to 630 ng/mL.
- A bone marrow biopsy and aspirate with cytogenetic testing is performed, revealing 1% blasts.
- Ten of 20 metaphases have an isolated chromosome 5q-deletion.
- Epo level is 615

Study MDS-003: Lenalidomide in MDS With Chromosome 5q Deletion

Eligibility:
- Del 5q-1
- RBC transfusion 2 U/ wk
- ≥60 wk transfusion
- ANC >3000/μL
- Platelets >200,000/μL
- De novo MDS
- IPSS Low/Mid-1 MDS

Primary endpoint: transfusion independence (Hgb ≥ 1 g/dL)
Secondary endpoints: cytogenetic response, pathologic response, safety

EPO + G-CSF in MDS: Long-term Outcome

<table>
<thead>
<tr>
<th>Long-term follow-up in 3 Nordic MDS studies</th>
<th>Median Response Duration (ms)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients (n=123)</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Complete responders (n=27)</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Partial responders (n=41)</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Low/Nil (n=48)</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Int-2 (n=48)</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>FAB RA/RARS (n=48)</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>FAB RARS (n=48)</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Good PR (n=48)</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Int PR (n=48)</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Poor PR (n=48)</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Compared with untreated patients from IPSS database, no difference was found in survival or AML evolution.
MDS-003: RBC Transfusion Independence in Del(5q) MDS

<table>
<thead>
<tr>
<th>Erythroid Response Rate (N=148)</th>
<th>n (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion Independence*</td>
<td>99 (67)</td>
<td>59–74</td>
</tr>
<tr>
<td><50% decrease in no. transfusions</td>
<td>13 (9)</td>
<td>5–15</td>
</tr>
<tr>
<td>Total transfusion response</td>
<td>112 (76)</td>
<td>88–82</td>
</tr>
</tbody>
</table>

Transfusion Independence Response Characteristics

<table>
<thead>
<tr>
<th>Median Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to response (wk)</td>
</tr>
<tr>
<td>Hgb increase (g/dL)</td>
</tr>
</tbody>
</table>

*For ≥ 2 wk and ≥ 1 g/dL rise in Hgb
*From baseline to maximum Hgb during RBC transfusion independence

MDS-002: Lenalidomide in Non-del(5q) MDS

Eligibility
- IPSS diagnosed low/neutropenic MDS w/o del(5q) abnormality
- ≥ 2 U RBCs/8 wks
- Platelets > 50,000/µL
- ANC > 500/µL

Yes: Continue
No: Off study

Dose reduction
- 5 mg QD
- 5 mg QOD

Primary endpoint: Ti, Hb response
Secondary endpoints: cytogenetic response, safety
MDS-002: Response to Lenalidomide Therapy

- Erythroid Response:
 - TI: 56/214 (26%)
 - TI + Minor: 93/214 (43%)
- Cytogenetic Response:
 - CCR: 4/47 (9%)
 - CCR + PR: 9/47 (19%)

- Median Hb increase: 3.2 g/dL
- Time to response: 4.8 wks
- Median duration of response: 41 wks

MDS-002: Untransfused Hgb Values in Non-del(5q) Patients Receiving Lenalidomide

- Normalized, per NCCN guidelines

MDS-002/003: Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>Grade ≥ 3 Adverse Events, %</th>
<th>Non-del(5q)</th>
<th>del(5q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Pruritus</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rash</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

MDS-004 Trial Design

Double-blind phase: Len 5 mg vs PBO and Len 10 mg vs PBO

- Patients stratified by IPSS score and cytogenetic complexity prior to randomization.
- Bone marrow assessments were performed at baseline, 12 weeks, and every 24 weeks thereafter.
- ANC, absolute neutrophil count; IPSS, International Prognostic Scoring System; LEN, lenalidomide; MDS, myelodysplastic syndromes; PBO, placebo; RBC-TI, red blood cell transfusion independence.

Efficacy: RBC-TI and Hemoglobin Over Time (mITT Population)

- Consistent results were observed in the ITT population (N = 205).
- Achievement of RBC-TI for 126 weeks was not affected by age, gender, FAB classification, IPSS risk, time from diagnosis, cytogenetic complexity, baseline platelet count, or number of cytopenias at baseline.
- Hemoglobin increased over time with a maximum median change in responders of LEN 5 mg of 5.1 g/dL and LEN 10 mg of 9.1 g/dL.

mITT population defined as patients with complete confirmed MDS who received ≥ 1 dose (N = 129).
Lenalidomide-Associated AML Progression and Death: Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Lenalidomide Treated (n = 295)</th>
<th>Untreated (n = 125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML progression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yr cumulative incidence, %</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5-yr cumulative incidence, %</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Median time to AML progression, yrs</td>
<td>Not reached</td>
<td>Not reached</td>
</tr>
<tr>
<td>OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-yr cumulative probability, %</td>
<td>90</td>
<td>74</td>
</tr>
<tr>
<td>5-yr cumulative probability, %</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>Median OS, yrs (95% CI)</td>
<td>5.2 (4.5-5.9)</td>
<td>3.8 (2.9-4.8)</td>
</tr>
</tbody>
</table>

- Factors associated with increased risk of AML progression: presence of > 1 cytogenetic abnormality in addition to del(5q), bone marrow blast percentage, and transfusion burden
- Factors associated with decreased risk of death: lenalidomide treatment, female sex, higher hemoglobin level, and higher platelet count

Ineffective Hematopoiesis in MDS Immunopathogenesis

Relation Between Age and Response to IST

Immunosuppressive Therapy (IST): Summary

- Age is the strongest variable for IST response\(^1\,^2\)
 - Pathogenetic difference in MDS of younger adults
- Responses are durable and may modify adverse effect of RBC-transfusion dependence on OS\(^1\)
- Karyotype may influence IST response and disease biology
 - Low frequency of IST response in del(5q)\(^1\)
 - High response rate in trisomy 8\(^3\)
 - NIH 8/17 (47%)
 - WT1 amplification with specific cellular response
 - Autoimmune hematopoietic suppression may select for +8 expansion

CALGB 9221: Randomized phase 3 study of Azacitidine in MDS

1. Supportive Care
 - Exit Criteria
 - Continue until Eopoint
 - Yes → Aza C
 - (dose as per arm #2)
 - No → Exit

2. Aza C75mg/m\(^2\)/d x 7 days q28 x 4

<table>
<thead>
<tr>
<th>M</th>
<th>0</th>
<th>29</th>
<th>57</th>
<th>113</th>
</tr>
</thead>
</table>

Response
- Continue Rx
- No Response → Off Study

Patients characteristics:

<table>
<thead>
<tr>
<th>MDS Subtype</th>
<th>RA</th>
<th>RARS</th>
<th>RAEB</th>
<th>RAEB-T</th>
<th>CMML</th>
<th>AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>21.2%</td>
<td>8.1%</td>
<td>38.4%</td>
<td>16.2%</td>
<td>8.1%</td>
<td>10.1%</td>
</tr>
<tr>
<td>RARS</td>
<td>6.1%</td>
<td>5.5%</td>
<td>42.4%</td>
<td>15.2%</td>
<td>7.6%</td>
<td>9.8%</td>
</tr>
<tr>
<td>RAEB</td>
<td>38.4%</td>
<td>5.5%</td>
<td>42.4%</td>
<td>15.2%</td>
<td>7.6%</td>
<td>9.8%</td>
</tr>
<tr>
<td>RAEB-T</td>
<td>16.2%</td>
<td>5.5%</td>
<td>42.4%</td>
<td>15.2%</td>
<td>7.6%</td>
<td>9.8%</td>
</tr>
<tr>
<td>CMML</td>
<td>8.1%</td>
<td>5.5%</td>
<td>42.4%</td>
<td>15.2%</td>
<td>7.6%</td>
<td>9.8%</td>
</tr>
<tr>
<td>AML</td>
<td>10.1%</td>
<td>5.5%</td>
<td>42.4%</td>
<td>15.2%</td>
<td>7.6%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

Myelodysplastic Syndromes: Case-Based Workshops With the Experts

Study 9221: RBC Transfusion Independence

- Benefit extended across all MDS subtypes
- Median time to transfusion independence was ~2.5 months

Randomized Phase II Study of Alternative Azacitidine Dose Schedules

Eligibility
- All FAB
- Cytopenia
- ECOG PS: 0-3

Study Design (N = 151)

- 5-2-2: 75 mg/m² (n = 50)
- 5-2-5: 50 mg/m² (n = 51)
- 5: 75 mg/m² (n = 50)

12 Cycles
AZA x 5 days q4-6 wks

Alternate AzaC Dose Schedule Study: Frequency of Major HI in Evaluable Patients (N = 139)

<table>
<thead>
<tr>
<th>Lineage HI in Evaluable Pts.* n (%)</th>
<th>5-2-2 (n = 50)</th>
<th>5-2-5 (n = 51)</th>
<th>5d (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythroid MA</td>
<td>19/43 (44)</td>
<td>19/43 (44)</td>
<td>20/44 (46)</td>
</tr>
<tr>
<td>RBC-TI</td>
<td>12/24 (50)</td>
<td>12/22 (55)</td>
<td>15/25 (64)</td>
</tr>
<tr>
<td>Platelets MA</td>
<td>12/28 (43)</td>
<td>8/30 (27)</td>
<td>11/22 (50)</td>
</tr>
<tr>
<td>Any HI</td>
<td>22/50 (44)</td>
<td>23/51 (45)</td>
<td>28/50 (56)</td>
</tr>
<tr>
<td>Neutrophils MA</td>
<td>4/23 (17)</td>
<td>4/23 (17)</td>
<td>9/24 (38)</td>
</tr>
<tr>
<td>Heme AEs > grade 3</td>
<td>33/50 (66)</td>
<td>24/48 (50)</td>
<td>17/50 (34)</td>
</tr>
<tr>
<td>AEs Tx delay</td>
<td>34/50 (68)</td>
<td>30/48 (63)</td>
<td>17/50 (34)</td>
</tr>
</tbody>
</table>

IWG 2000 HI criteria.
Hematologic Improvement

- Erythroid Major
- Platelet Major
- Neutrophil Major
- Any HI*

*Pts counted only once for best response in an improvement category
†Minor improvement at top of HI columns

Decitabine Phase 3

Demographics:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Decitabine (n = 89)</th>
<th>Supportive Care (n = 81)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male)</td>
<td>59 (66)</td>
<td>57 (70)</td>
</tr>
<tr>
<td>Median Age</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Median Time From Diagnosis (months)</td>
<td>7.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Type of MDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De novo</td>
<td>77 (87)</td>
<td>70 (86)</td>
</tr>
<tr>
<td>Secondary</td>
<td>12 (13)</td>
<td>11 (14)</td>
</tr>
<tr>
<td>Previous MDS Therapy</td>
<td>20 (22)</td>
<td>16 (20)</td>
</tr>
<tr>
<td>IPSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk</td>
<td>23 (26)</td>
<td>21 (26)</td>
</tr>
<tr>
<td>Intermediate-2</td>
<td>38 (43)</td>
<td>36 (44)</td>
</tr>
<tr>
<td>Intermediate-1</td>
<td>28 (31)</td>
<td>24 (30)</td>
</tr>
</tbody>
</table>

Response to Decitabine in Subgroups

<table>
<thead>
<tr>
<th>Overall Response Rate (CR+PR)*</th>
<th>Decitabine (n = 89)</th>
<th>Supportive Care (n = 81)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSS subgroups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate-1</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>Intermediate-2</td>
<td>21%</td>
<td>0%</td>
</tr>
<tr>
<td>High Risk</td>
<td>13%</td>
<td>0%</td>
</tr>
<tr>
<td>Prior MDS Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>No</td>
<td>17%</td>
<td>0%</td>
</tr>
<tr>
<td>De novo MDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>17%</td>
<td>0%</td>
</tr>
<tr>
<td>No</td>
<td>16%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Phase III Intergroup Study of Lenalidomide (LEN) vs LEN + Epoetin Alpha in Low/Int-1 MDS (ECOG 2905)

Eligibility
- HR: age ≥ 18 years
- IPSS Low/Int-1
- Hgb < 9.5 g/dL
- Poor EPO resp profile or failed EPO
- Stratify:
 - del(5q)
 - sEPO
 - Prior EPO/DA

Principal Objective:
- Modified IWG 2000 MER

Secondary:
- Time to MER; Duration of MER; LEN mechanism of action; Frequency of: MER to salvage combination therapy; cytogenetic response; hematologic response

Phase 1 Dose-Ranging Study of Oral Ezatiostat Hydrochloride (Telintra®, TLK199) in Combination with Lenalidomide in Patients with Non-Del (5q) Low to Intermediate-1 Risk (MDS)

- In Low to Intermediate-1 (Int-1) risk non-del(5q) MDS, lenalidomide treatment is less effective with a lower response rate (25%) and shorter response duration
- Ezatiostat, a glutathione S-transferase P1-1 (GST P1-1) inhibitor, activates Jun kinase, promoting the growth and maturation of hematopoietic progenitors while inducing apoptosis in malignant cells.
- RP2D 2000 mg TLK/10 mg len
- Hi-E 43%, 36% RBC T1.

Raza et al. Blood 2011; 2278

Romiplostim vs Placebo in Low- or Intermediate-1-Risk MDS

- Patients with low/IPSS Low or intermediate-1 MDS and low platelet count receiving supportive care (N = 250)
- 1:1 randomization
- Placebo weekly + Standard Care
- Patients with low/IPSS Low or intermediate-1 MDS and low platelet count receiving supportive care (N = 187)
- Placebo weekly
- **Primary endpoint:** clinically significant bleeding events (≥ grade 2 according to modified WHO scale)
- **Secondary endpoints:** platelet transfusion events, bleeding events, platelet response, OS, safety, progression to AML

Romiplostim MDS Study: Conclusions

- Use of romiplostim in patients with low-intermediate-1-risk MDS and low platelet counts yielded several benefits vs placebo
 - Platelet response increased 15-fold
 - Overall bleeding events significantly reduced
 - ≥ grade 2 bleeding events significantly decreased in patients with baseline platelet count ≥ 20,000 cells/mm³
 - Platelet transfusion events significantly decreased in overall population and in patients with baseline platelet count < 20,000 cells/mm³
- Romiplostim generally well tolerated, with toxicity profile similar to placebo
- Increases in blast counts and AML progression more frequent with romiplostim vs placebo, prompting study halt

Novel Agents/Trials in low risk MDS

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trial Phase</th>
<th>MOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>siltuximab</td>
<td>2</td>
<td>IL-6 antibody</td>
</tr>
<tr>
<td>Oral azacitidine</td>
<td>2</td>
<td>Hypomethylating agent</td>
</tr>
<tr>
<td>Telitra</td>
<td>2</td>
<td>GST inhibitor</td>
</tr>
<tr>
<td>LBH-689</td>
<td>2</td>
<td>HDAC inhibitor</td>
</tr>
<tr>
<td>Revlimid + Azacit</td>
<td>2</td>
<td>Combination trial/Rash</td>
</tr>
<tr>
<td>Eltrombopag</td>
<td>2</td>
<td>TPO Agonist</td>
</tr>
</tbody>
</table>

Conclusions & Recommendations:

MDS:
- Significant impact upon patient survival and quality of life

Treatment Directions:
- SCT is the only curative option.
- Several agents have already demonstrated a significant impact on survival.
- Several promising new agents are on the horizon, the results of trial evaluating such novel agents are on their way.
- Improvement in our understanding of disease biology is critical to continue to provide rationale therapeutic options to patients with this disease.