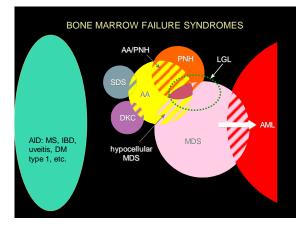
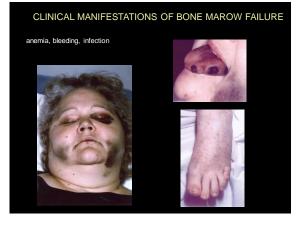


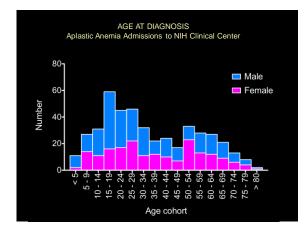
Aplastic Anemia: Current Thinking on Disease, Diagnosis and Non-Transplant Treatment

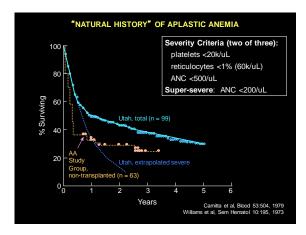

Bogdan Dumitriu, MD Hematology Branch National, Heart, Lung and Blood Institute National Institutes of Health

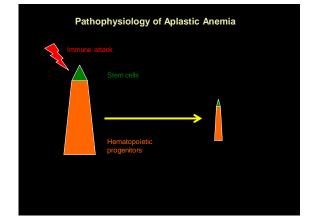
Today's agenda


Aplastic Anemia – general overview

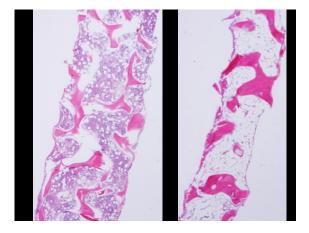
Non-transplant treatment options


Novel agents and active research




Causes of Aplastic Anemia

Most of the cases of Aplastic Anemia have no identifiable cause


Pregnancy, eosinophilic fasciitis, and seronegative hepatitis are associated with AA

Drugs and chemicals have been reported as well (Benzene, Chloramphenicol)

All identifiable causes explain very few cases of AA

3

• 1960' s \rightarrow 10% survival in 1 year

 $\bullet\,2010 \rightarrow 90\%$ survival in 1 year

Immunosuppressive therapy

- Bone marrow transplantation
- Supportive care
- Novel agents

Immunosuppressive therapy

- Anti-thymocyte globulin (ATG)
 - Horse
 - Rabbit
- Cyclosporine (CsA)

Campath

• Others

Immunosuppressive therapy

- First line of treatment in adults
- Salvage for treatment-refractory patients
- Treatment for relapsed disease

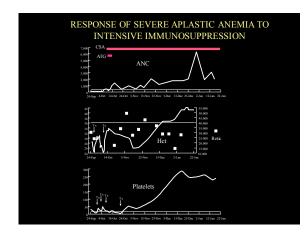
PROGRESS IN IMMUNOSUPPRESSIVE THERAPIES FOR SEVERE APLASTIC ANEMIA

• <u>Era</u>	<u>Drug</u>	<u>Response</u>
• 1960s	corticosteroids	~10% (occasional)
• 1970s	ATGs	40-50%
• 1980s	ATG plus CSA	60-70%

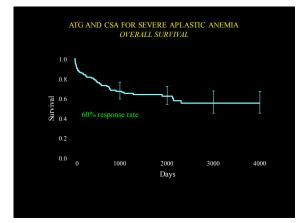
• 1960' s \rightarrow 10% survival in 1 year

 $\bullet\,2010 \rightarrow 90\%$ survival in 1 year

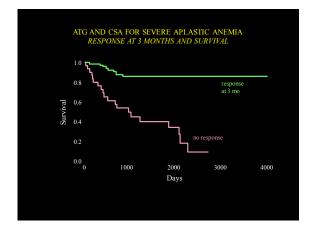
- Immunosuppressive therapyBone marrow transplantation
 - Supportive careNovel agents

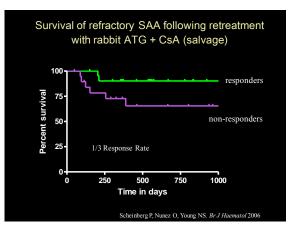

Immunosuppressive therapy

- Anti-thymocyte globulin (ATG)
 - Horse
 - Rabbit
- Cyclosporine (CsA)
- Campath
- Others


Immunosuppressive therapy

- First line of treatment in adults
- Salvage for treatment-refractory patients
- Treatment for relapsed disease


PROGRESS IN IMMUNOSUPPRESSIVE THERAPIES FOR SEVERE APLASTIC ANEMIA						
• <u>Era</u>	Drug	Response				
• 1960s	corticosteroids	~10% (occasional)				
• 1970s	ATGs	40-50%				
• 1980s	ATG plus CSA	60-70%				

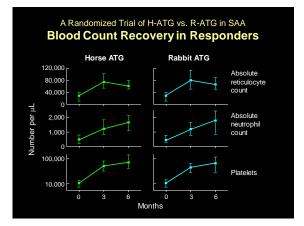


INTENSIVE IMMUNOSUPPRESSION FOR SAA COMPARISON OF RESULTS							
Study	Years	N	Median Age (years)	Response	Relaps e	Clonal Evolution	Survival
German	1986-1989	84	32	65%	19%	8%	58% at 11 yrs
NIH	1991-1998	122	35	61%	35%	11%	55% at 7 yrs
EGMBT	1991-1998	100	16	77%	12%	11%	87% at 5 yrs
Japan	1992-1997	119	9	68%	22%	6%	88% at 3 yrs
German/A ustrian	1993-1997	114	9	77%	12%	6%	87% at 4yrs
Japan	1996-2000	101	54	74%	42%	8%	88% at 4 yrs
NIH	1999-2003	104	30	62%	37%	9%	80% at 4 yrs
EGBMT	2002-2008	192	46	70%	33%	4%	76% at 6 yrs
NIH	2003-2005	77	26	57%	26%	10%	93% at 3yrs
NIH	2005-2010	120	28	68%	28%	21%	96% at 3 yrs

NEW DIRECTIONS IN TREATMENT FOR APLASTIC ANEMIA

- Add to horse ATG + CsA platform
 - G-CSF (Neupogen)
 - Mycophenolate mofetil
 - Sirolimus
- long course immunosuppression
- Augment initial lymphocytotoxicity
 - Horse ATG
 - Rabbit ATG
 - Campath

A Randomized Trial of H-ATG vs. R-ATG in SAA Patients and Methods

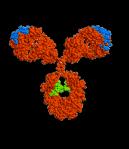

- 120 consecutive patients (60 per arm)
- NIH Clinical Center
- 1:1 randomization
- Primary objective -response at 6 months

Scheinberg et al. NEJM 2011

A Randomized Trial of H-ATG vs. R-ATG in SAA Hematologic Responses at 3 and 6 months

	Horse ATG	Rabbit ATG	P-value
3 months	37/60 (62%)	20/60 (33%)	0.003
6 months	41/60 (68%)	22/60 (37%)	< 0.001

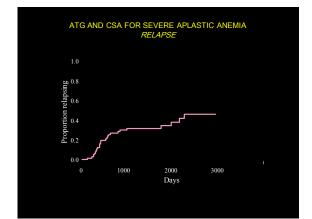
Survival of refractory SAA following retreatment with rabbit ATG + CsA (salvage) 100 responders Percent survival 75 non-responders 50-25-1/3 Response Rate 0 1000 250 500 750 Ō Time in days


Alemtuzumab (Campath-1H)

Scheinberg P, Nunez O, Young NS. Br J Haematol 2006

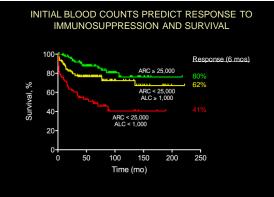
- Anti-CD52 Antibody
- Murine hypervariable regions fused into human IgG1 •
- CD52 expressed:

 - B and T cells
 NK cells, dendritic cells
 - Monocytes, macrophages
 Plasma cells, Eos
- No CD52 expression on:


 - RBCs, platelets
 Hematopoietic stem cells

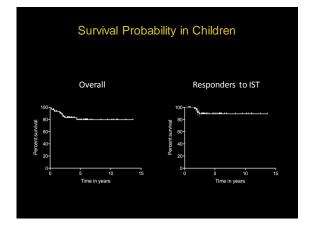
and O' Brien, Cancer Invest. 2007 24: 718-725 z-Campo PM, Cytometry B Clin Cytom. 2006

SECOND IMMUNOSUF REFRACTOF	
Treatment arm (N=54)	Overall response
rabbit ATG (N=27)	9 (35%)
alemtuzumab (N=27)	10 (37%)



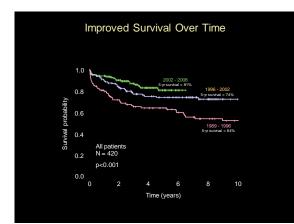
RELAPSE AFTER ATG + CSA								
Cyclosporine-dependen	Cyclosporine-dependence Post-1st relapse							
Years post-relapse	1	2	3	4	5	<u>6</u>	7	
Patients on CsA	20/22	19/20	14/18	11/17	11/14	7/11	4/7	
	(86%)	(91)	(78)	(65)	(79)	(64)	(57)	
<u>Retreatment with rabbit</u>	<u>ATG + C</u>	<u>sA Post-1</u>	st <u>relapse</u>	.→ 2/3 re	esponse			
		ld S, Folh erg P, Nut						

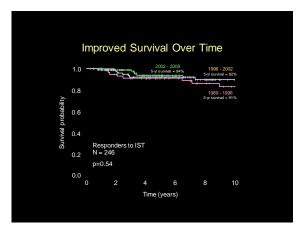
CAMPATH IMMUNOSUPPRE	SSION FOR RELAPSED SAA
Treatment	Overall response
Campath (N=25)	14 (56%)

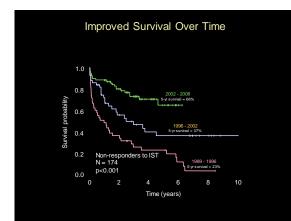


Scheinberg P	et al. Br J Haematol 2009;	144: 206

Probability of response Probabilityaccording to age to age						
	Number of	Res	ponse at 6 mo	nths	P-value	
	patients (%)	Number	Percent	95% CI		
H-ATG	316 (100)	194	61.4	(56.0, 66.8)		
Age (years)						
< 18	78 (25)	58	74.4	(64.5, 84.3)	0.0199	
18 to 60	187 (59)	109	58.3	(51.2, 65.4)		
> 60	51 (16)	27	52.9	(38.8, 67.1)		
			Scheinberg	P et al. J Ped	iatrics 2008.	







HEMATOPOIETIC GROWTH FACTORS AS THERAPY FOR SAA

Vadhan-Raj S et al, N Engl 1988; 319:1628: GM-CSF pilot Ganser A et al, Bood 1990; 76;1287: IL-3 pilots Kojima S et al, Blood 2002;100:786: G-CSF > monosomy 7 Tichelli A et al, Blood 2011; 117:4434: G-CSF shows no survival benefit

ELTR	ROMBOPAG F	OR REFR	ACTORY	SEVERE	APLASTIC ANEMIA	
	SAA with plts < 30K/uL Refractory to ATG/CSA Dose esca every 2 w g daily 150 mg		Non-responders offstudy			
			eeks to		atologic response at 3 months	
	blogic Response		ansfusion		sponders followed monthly, on drug	
 Platelets: >20K/uL increase, or transfusion-independence RBCs: > 1.5 g/dL increase in Hb, or transfusion-independence 						
 ANC: >100% increase if severe neutropenia, or >500/uL increase 						

REFRACTORY SAA ELTROMBOPAG STUDY RESULTS

NIH Protocol 09-0H0154; ClinicalTrials.govidentifier: NCT00922883

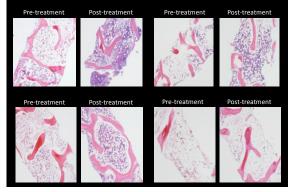
Censure date 11/1/2011 26 patients enrolled

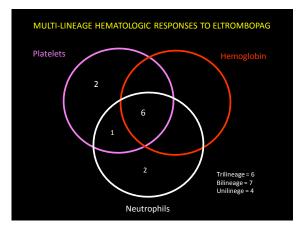
25 evaluable patients

Median follow up 13 months (range 4-28 months)

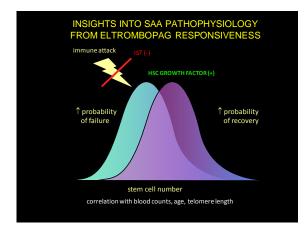
11 responders (44%) • 9 platelet responses

• 2 hemoglobin responses


 additional 4 at > 16wks • 4 neutrophil responses


additional 3 at > 16wks

14 non-responders				
14 non-responders				
 10 stable disease 				
 2 died of progression 				
 2 clonal evolution to MDS 				


1 patient ineligible, not treated

BONE MARROW CELLULARITY AT ONE YEAR

SUMMARY

- Eltrombopag can promote tri-lineage hematopoiesis in SAA patients refractory to IST
 - 44% clinical response rate
 - Transfusion independence
 - Well-tolerated
- Eltrombopag stimulation may expand the HSC pool in humans
- Addition of Eltrombopag early in SAA may increase response rate, decrease time to response, prevent HSC depletion, and avoid clonal progression

ELTROMBOPAG FOR MODERATE AA NHLBI 09-H-0154 clinicaltrials.gov NCT00922883

Eltrombopag, dose escalation to **150 mg QD** by mouth >18 years old; platelet count <30,000/uL Assessment by blood counts and BM at 3 and 6 months

Horse ATG + CSA and ELTROMBOPAG for treatment-naïve SAA NHLBI 12-H-xxxx

Add eltrombopag to existing horse ATG + CSA platform will increase overall response and decrease relapses

TELOMERES AND BONE MARROW FAILURE

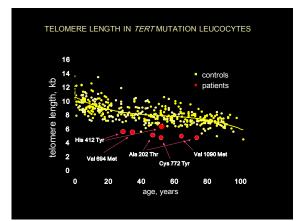
TELOMERE STRUCTURE AND BIOLOGY

Cap chromosome ends

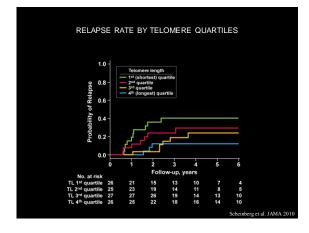
-Tandem TTAGGG repeats

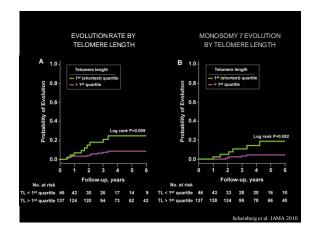
-Bound to array of proteins: telomerase complex

-Forms higher order chromatin T loop

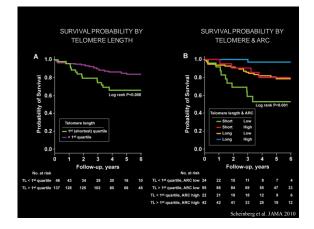

-Shields 3' end to prevent recognition as a DNA "break" by non-homologous end joining machinery

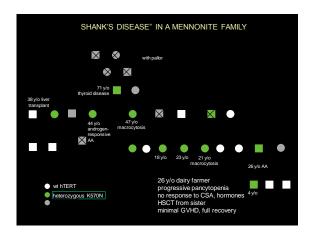
-TTAGGG loss with proliferation: "end replication problem"

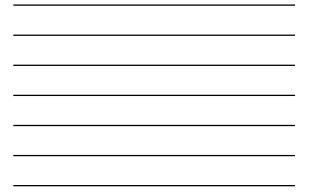


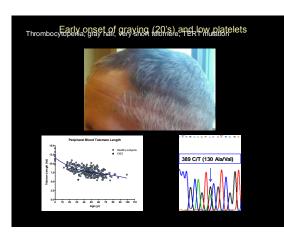

SHORT TELOMERE LENGTH PREDICTS RELAPSE AND EVOLUTION IN SEVERE APLASTIC ANEMIA

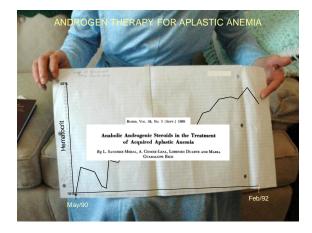
N = 168 consecutive patients on NIH IST protocols Mean age = 34 years (4-82 years)

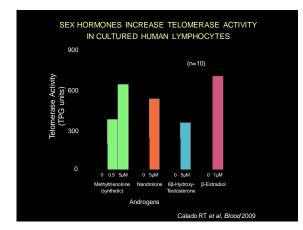

no relationship to response to treatment (PR, CR)










LATE PRESENTATION OF DYSKERATOSIS CONGENITA

Danazol for telomeropathy

11-H-0209: "Danazol for Genetic Bone Marrow and Lung Disorders"

ClinicalTrials.gov identifier: NCT01441037

http://clinicaltrials.gov/ct2/show/NCT01441037?term=danazol+for+telomere&rank=1

15 patients enrolled in first 6 months.

First patient enrolled on 08/19/2011

First 6 months - no drug-related toxicities.

(Minimal elevation in LFTs in almost all patients and controllable headaches in 4 patients).