Risks and Benefits of Blood Transfusions

Patient and Family Conference
Aplastic Anemia & MDS International Foundation
July 10-12th, 2009
Indianapolis, Indiana
Susan M. Carson RN, MSN, CPNP
Childrens Hospital Los Angeles

Objectives

- Understand the following:
 - Benefits and indications for blood transfusions
 - Safety - incidence of infections
 - Cross matching and alloimmunization
 - Transfusion reactions
 - Iron overload - cause and screening
 - Importance of irradiation

Red Cells (Erythrocytes)

- Carry Oxygen to tissues
- Remove Carbon Dioxide from tissues

- Whole Blood
- Packed RBC
 - ~14 million units/year in U.S.
 - Usually stored for 3-6 weeks
 - at 4-10°C
Blood: The Life Source

- Blood transfusions a vital treatment for many illnesses
- AA/MDS/PNH/Cancer/BMT: correct anemia caused by disease and therapy
- Thalassemia: replace what body can’t make
- Sickle Cell: prevent life-threatening complications
- Replace blood loss due to trauma or surgery

Transfusions: The Benefit

- Safe: advanced donor screening and unit testing
- Available
- Simple
- Improve the quality of life for the patient

Transfusions: The Cost

- Infection
- Alloimmunization
- Transfusion Reactions
- Iron Overload
- TR- GVHD
Infection

- New advances in donor screening and testing
- Incidence of infected units
 - Hepatitis B 1:205,000
 - Hepatitis C 1:2 million
 - HIV 1:2 million

Vigorous donor screening and interviewing

“The next infection”

Every Donation is Tested

- ABO, Rh (blood type), Ab screen
- Hepatitis B HBsAg, Anti-HBc
- Hepatitis C Antibodies, Nucleic Acid Test
- HIV 1/2 Antibodies, Nucleic Acid Test
- HTLV I and HTLV-II Antibodies
- Syphilis Antibodies
- West Nile Virus Nucleic Acid Test
- T. cruzi (Chagas) Antibodies
- Bacteria Platelets only
- Optional CMV (Cytomegalovirus) Antibodies
- Sickle cell Hgb. S

ABO blood groups

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Red cell antigens</th>
<th>Frequency in caucasians</th>
<th>Serum antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA, AO</td>
<td>A</td>
<td>40%</td>
<td>anti-B</td>
</tr>
<tr>
<td>BB, BO</td>
<td>B</td>
<td>11%</td>
<td>anti-A</td>
</tr>
<tr>
<td>AB</td>
<td>AB</td>
<td>4%</td>
<td>none</td>
</tr>
<tr>
<td>OO</td>
<td>O</td>
<td>45%</td>
<td>anti-A, anti-B</td>
</tr>
</tbody>
</table>
Compatibility Testing

<table>
<thead>
<tr>
<th>RECIPIENT</th>
<th>DONOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ABO and Rh (D) type</td>
<td>X</td>
</tr>
<tr>
<td>2. Antibody screen</td>
<td>X</td>
</tr>
</tbody>
</table>

Compatibility Testing

<table>
<thead>
<tr>
<th>RECIPIENT</th>
<th>DONOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Crossmatch (serum)</td>
<td>PLUS</td>
</tr>
</tbody>
</table>

Alloimmunization

- All patients transfused based on A,B,O and Rh factor
- 30-40 lesser antigens on the RBC
- Ethnic trends in antigen expression
- Donor pool: mostly Caucasian
- RBC phenotyping and antigen matched blood for patients receiving multiple transfusions
 - Especially critical for non-Caucasian patients
The Pathophysiology of Alloimmunization

• Presentation of foreign antigens on donor cells
• Stimulate immune system: Ab response
 – Repeated exposure and immunization: sustained clonal response and clinically significant Ab response
 – Some antibodies are not clinically significant
• Can lead to AIHA syndrome

Treatment and Prevention

• Antigen-matched blood
 – E, Kell, D, c, Jk(a), Fy(a), e
• Observation, hydration
• Immunomodulating therapy
 – IVIG, CSA, rituximab, prednisone, vincristine

Leukoreduction

• White cells removed, usually by filtration
• Benefit
 – reduce recipient febrile reactions
 – Reduce CMV transmission
 – Reduce alloimmunization
Non Hemolytic Transfusion Reactions

- Exposure to donors WBC in trace
- Fever, hives
- Rx: premedication, leukoreduction, washed cells

Leukoreduction

Pre-BMT Considerations

- Irradiated Units
- CMV negative units
- Directed donor
- Unit exposure
Irradiation

- Irradiation kills certain white cells (lymphocytes) that can attack the recipient’s system
 - Donations from first degree blood relatives
 - Recipients who are severely immunocompromised
 - neonates
 - transplant patients

Iron Overload from Transfusions

- Each unit of blood deposits 200 mg of iron in the body.
- Iron deposits in the liver, pancreas, thyroid, parathyroid, pituitary gland, and heart.
- Oxidative damage from iron causes tissue damage.
- THERE IS NO PHYSIOLOGICAL MECHANISM TO EXCRETE THE IRON!!
- Signs of iron overload appear after 10-20 transfusions.
Complications of Iron Overload

- Arrhythmia
- Heart Failure
- Liver failure
- Pan-endocrine failure
 - Diabetes
 - Hypothyroidism
 - Growth hormone deficiency
 - Hypogonadism

Iron Input

Total Iron (LIC) = Tissue iron x Tissue Sensitivity x Time

Tissue Iron

Organ Damage

Organ Dysfunction

Measurement of Tissue Iron

- Ferritin
- Liver biopsy
- SQUID
- MRI
 - Heart T2* / SIR
 - Liver R2
 - (other organs?)
- NTBI / LPI

SQUID = Superconducting Quantum Interference Device
NTBI = Non-transferrin Bound Iron
LPI = Labile Plasma Iron

Iron Overload

- We have no method now to predict when a patient will suffer catastrophic side effects of iron overload.
- MRI, liver biopsy, SQUID and other tests can tell us where the iron is but not when the organ will fail.
- Each patient is different: genetic factors influence effect of iron on organs.
Chelators

- desferrioxamine (Desferal®)
- deferasirox (Exjade®)
- Future: L1 (deferiprone), HES-DFO, combination therapies

Contact Information

Susan M. Carson
Children’s Hospital Los Angeles
4650 Sunset Blvd MS #54
Los Angeles, CA
90027
323-361-4132
Scarson@chla.usc.edu